### Analytics

#### JUMP INTO THE EVOLVING WORLD OF DATABASE MANAGEMENT

Principles of Database Management provides students with the comprehensive database management information to understand and apply the fundamental concepts of database dosign and modeling, database systems, data storage, and the evolving world of data warehousing, governance and more. Designed for those studying database management for information management or computer science, this illustrated textbook has a well-balanced theory-practice focus and covers the essential topics, from established database technologies up to recent trends like Big Data, NoSQL, and analytics. On-going case studies, drill-down boxes that reveal deeper insights on key topics, retention questions at the end of every section of a chapter, and connections boxes that show the relationship between concepts throughout the text are included to provide the practical toos to get started in database management.

#### **KEY FEATURES INCLUDE:**

- Full-color illustrations throughout the text.
- Extensive coverage of important trending topics, including data warehousing, business intelligence, data integration, data quality, data governance, Big Data and analytics.
- An online playground with diverse environments, including MySQL for querying; MongoDB; Neo4j Cypher; and a tree structure visualization environment.
- Hundreds of examples to illustrate and clarify the concepts discussed that can be reproduced on the book's companion online playground.
- · Case studies, review questions, problems and exercises in every chapter.
- · Additional cases, problems and exercises in the appendix.

#### Online Resources www.cambridge.org/

Instructor's resources Solutions manual Code and data for examples

Cover illustration: @Chen Hanquan / DigitalVision / Getty Images. Cover design: Andrew Ward.



ANAGEMENI

WILFRIED LEMAHIEU Seppe vanden broucke Bart baesens

#### DATABASE MANAGEMENT

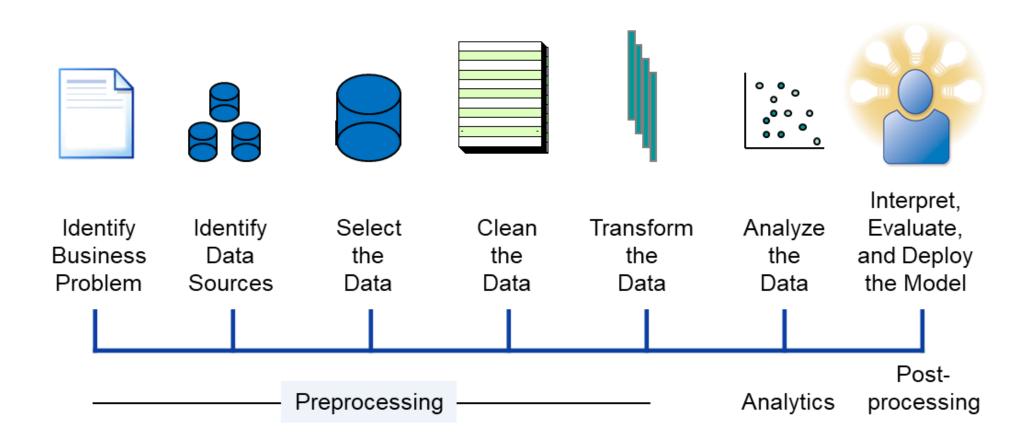
AND ANALYZING BIG AND SMALL DATA

#### www.pdbmbook.com

# Introduction

- Analytics Process Model
- Example Analytics Applications
- Data Scientist Job Profile
- Data Preprocessing
- Types of Analytics
- Post Processing of Analytical Models
- Critical Success Factors for Analytical Models
- Economic Perspective On Analytics
- Improving the ROI of Analytics
- Privacy and Security

## **Analytics Process Model**



# **Example Analytics Applications**

- Risk analytics
  - credit scoring
  - fraud detection
- Marketing analytics
  - churn prediction
  - response modeling
  - customer segmentation
- Recommender systems
- Texts analytics

# **Example Analytics Applications**

| Marketing              | Risk Management      | Government      | Web           | Logistics    | Other            |
|------------------------|----------------------|-----------------|---------------|--------------|------------------|
| Response modeling      | Credit risk modeling | Tax avoidance   | Web analytics | Demand       | Text analytics   |
|                        |                      |                 |               | forecasting  |                  |
| Net Lift modeling      | Market risk modeling | Social security | Social media  | Supply chain | Business Process |
|                        |                      | fraud           | analytics     | analytics    | analytics        |
| Retention modeling     | Operational risk     | Money           | Multivariate  |              | HR analytics     |
|                        | modeling             | Laundering      | testing       |              |                  |
| Market basket analysis | Fraud detection      | Terrorism       |               |              | Healthcare       |
|                        |                      | detection       |               |              | analytics        |
| Recommender systems    |                      |                 |               |              | Learning         |
|                        |                      |                 |               |              | analytics        |
| Customer segmentation  |                      |                 |               |              |                  |

# Data Scientist Job Profile

- Statistics, machine learning and/or quantitative modeling
- Programming
- Communication/Visualization
- Business Knowledge
- Creativity

# Data Preprocessing

- Denormalizing data for analysis
- Sampling
- Exploratory Analysis
- Missing values
- Outlier Detection and Handing

# Denormalizing data for analysis

| Transactions |            |        |  |  |  |
|--------------|------------|--------|--|--|--|
| ID           | Date       | Amount |  |  |  |
| XWV          | 2/01/2015  | 52€    |  |  |  |
| XWV          | 6/02/2015  | 21€    |  |  |  |
| XWV          | 3/03/2015  | 13€    |  |  |  |
| BBC          | 17/02/2015 | 45€    |  |  |  |
| BBC          | 1/03/2015  | 75€    |  |  |  |
| VVQ          | 2/03/2015  | 56€    |  |  |  |

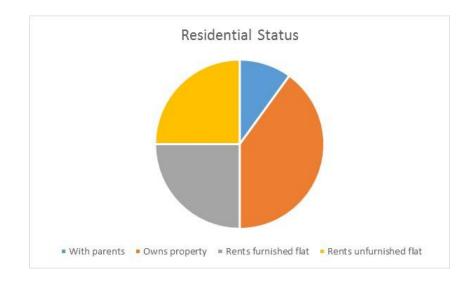
| Customer data |     |    |            |  |  |
|---------------|-----|----|------------|--|--|
| ID            | Age |    | Start date |  |  |
| XWV           |     | 31 | 1/01/2015  |  |  |
| BBC           |     | 49 | 10/02/2015 |  |  |
| VVQ           |     | 21 | 15/02/2015 |  |  |

| Non-normalized data table |            |        |     |            |  |  |
|---------------------------|------------|--------|-----|------------|--|--|
| ID                        | Date       | Amount | Age | Start date |  |  |
| XWV                       | 2/01/2015  | 52€    | 31  | 1/01/2015  |  |  |
| XWV                       | 6/02/2015  | 21€    | 31  | 1/01/2015  |  |  |
| XWV                       | 3/03/2015  | 13€    | 31  | 1/01/2015  |  |  |
| BBC                       | 17/02/2015 | 45€    | 49  | 10/02/2015 |  |  |
| BBC                       | 1/03/2015  | 75€    | 49  | 10/02/2015 |  |  |
| VVQ                       | 2/03/2015  | 56€    | 21  | 15/02/2015 |  |  |

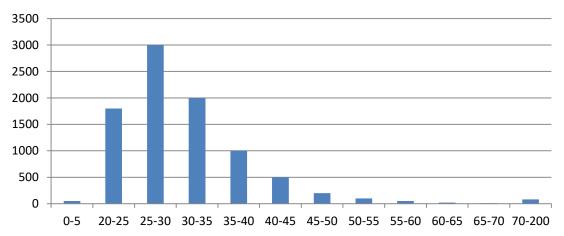
# Sampling

- Take a subset of historical data to build analytical model
- Good sample should be representative for the future entities on which the analytical model will be run
- Choosing the optimal time window of the sample involves a trade-off between lots of data and recent data

# **Exploratory Analysis**



#### **Histogram Age**



# **Exploratory Analysis**

- Descriptive statistics
  - Mean
  - Median
  - Mode
  - Standard deviation
  - Percentile values

# **Missing Values**

| ID | Age | Income | Marital status | Credit bureau score | Fraud |  |
|----|-----|--------|----------------|---------------------|-------|--|
| 1  | 34  | 1800   | ?              | 620                 | Yes   |  |
| 2  | 28  | 1200   | Single         | ?                   | No    |  |
| 3  | 22  | 1000   | Single         | ?                   | No    |  |
| 4  | 60  | 2200   | Widowed        | 700                 | Yes   |  |
| 5  | 58  | 2000   | Married        | ?                   | No    |  |
| 6  | 44  | ?      | ?              | ?                   | No    |  |
| 7  | 22  | 1200   | Single         | ?                   | No    |  |
| 8  | 26  | 1500   | Married        | 350                 | No    |  |
| 9  | 34  | ?      | Single         | ?                   | Yes   |  |
| 10 | 50  | 2100   | Divorced       | ?                   | No    |  |

# **Missing Values**

- Keep
- Delete (observation or variable)
- Replace (aka impute)

# **Outlier Detection and Handling**

- Valid versus invalid observations
- Outlier detection
  - Minimum/Maximum
  - Histogram, box plot, scatter plot
- Outlier handling
  - Treat as missing value (invalid observation)
  - Capping (valid observation)

# **Types of Analytics**

- Predictive Analytics
- Evaluating Predictive Models
- Descriptive Analytics
- Social Network Analytics

# **Predictive Analytics**

- Linear Regression
- Logistic Regression
- Decision Trees
- Other predictive analytics techniques

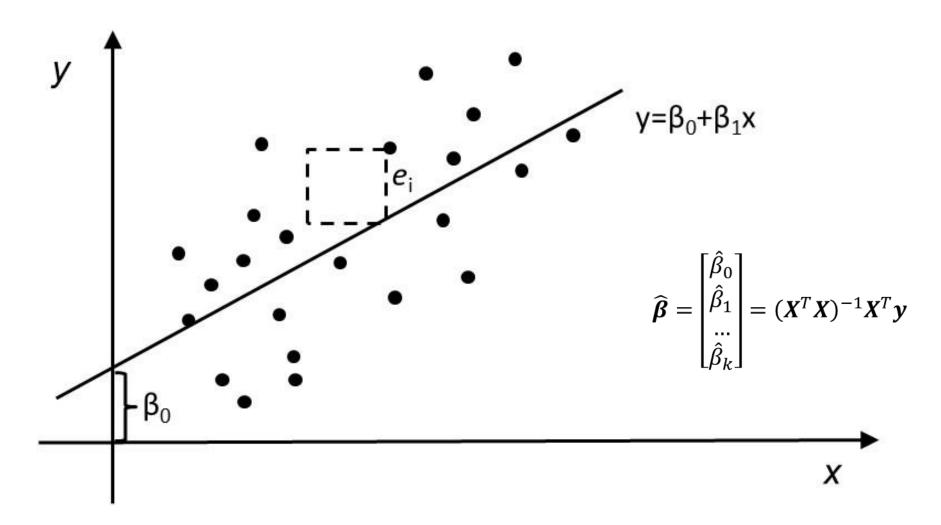
#### Linear Regression

• 
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

|                       | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <br>$x_k$       | у                     |
|-----------------------|-----------------------|-----------------------|-----------------|-----------------------|
| <i>x</i> <sub>1</sub> | $x_1(1)$              | $x_1(^2)$             | <br>$x_1^{(k)}$ | <i>y</i> <sub>1</sub> |
| <b>x</b> <sub>2</sub> | $x_{2}^{(1)}$         | $x_2^{(2)}$           | $x_2(k)$        | <i>y</i> <sub>2</sub> |
|                       |                       |                       | <br>            |                       |
| <i>x</i> <sub>n</sub> | $x_n(1)$              | $x_n(^2)$             | $x_n(k)$        | $\mathcal{Y}_n$       |

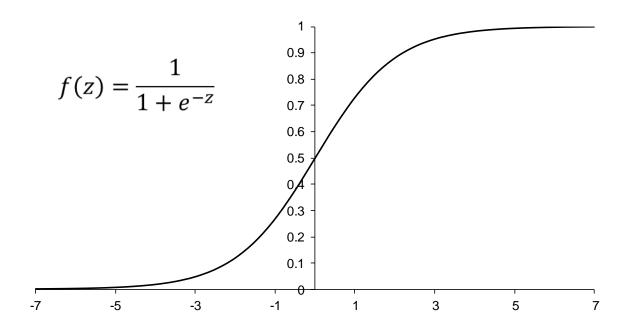
•  $\frac{1}{2}\sum_{i=1}^{n}e_{i}^{2} = \frac{1}{2}\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})^{2} = \frac{1}{2}\sum_{i=1}^{n}(y_{i}-(\beta_{0}+\boldsymbol{\beta}^{T}\boldsymbol{x}_{i}))^{2}$ 

### Linear Regression



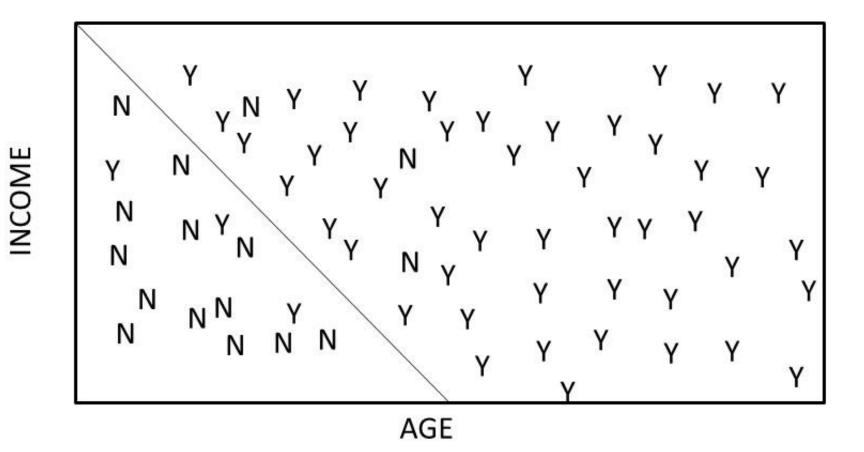
| Customer | Age | Income | Gender | ••• | Response | У |
|----------|-----|--------|--------|-----|----------|---|
| John     | 30  | 1200   | М      |     | No       | 0 |
| Sarah    | 25  | 800    | F      |     | Yes      | 1 |
| Sophie   | 52  | 2200   | F      |     | Yes      | 1 |
| David    | 48  | 2000   | М      |     | No       | 0 |
| Peter    | 34  | 1800   | М      |     | Yes      | 1 |

 $y = \beta_0 + \beta_1 Age + \beta_2 Income + \beta_3 Gender$ 



p(response = yes|Age, Income, Gender) = 1

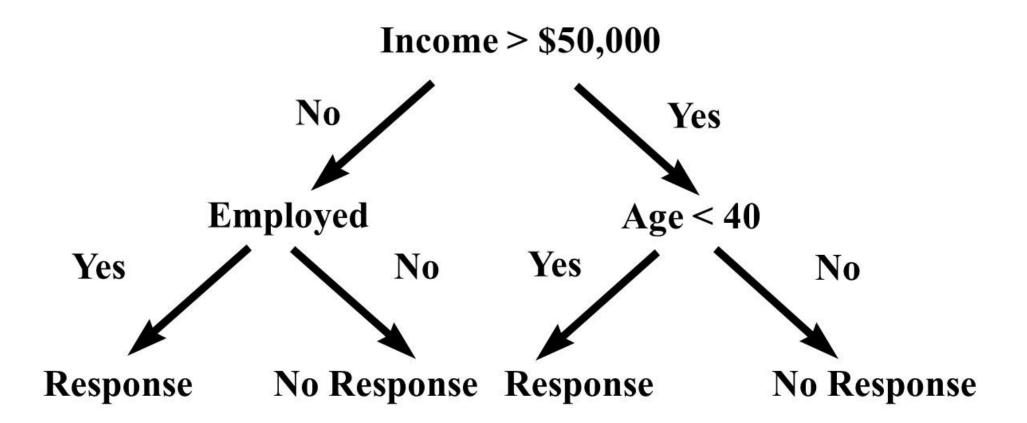
**1**  $\square \rho - (\beta_0 + \beta_1 \text{Age} + \beta_2 \text{Income} + \beta_3 \text{Gender})$ 



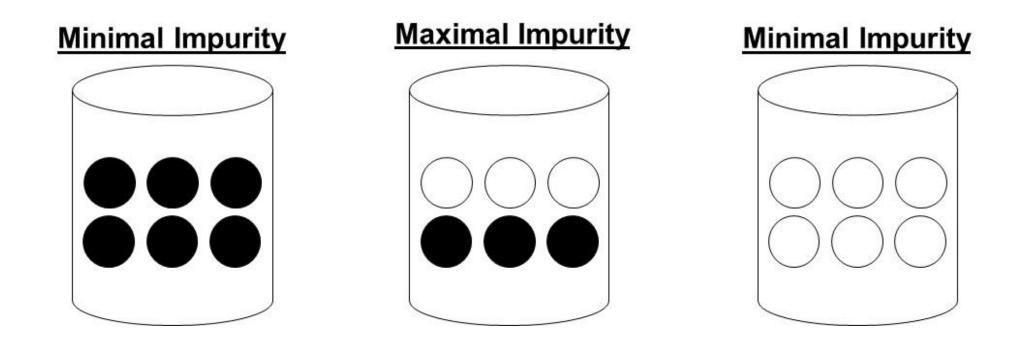
- Odds ratio
  - $-e^{\beta_i}$

multiplicative increase in the odds when a variable increases by 1 (ceteris paribus)

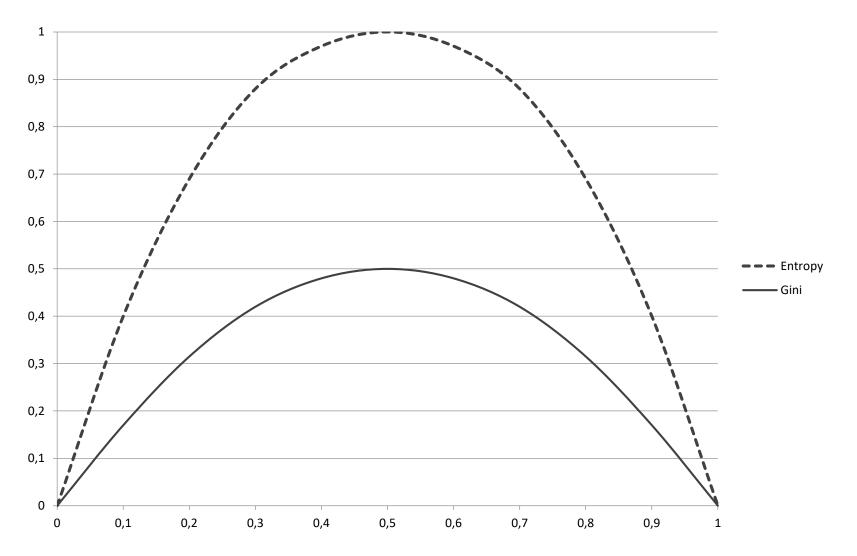
- Doubling amount
  - $-\log(2)/\beta_i$
  - amount of change required for doubling primary outcome odds

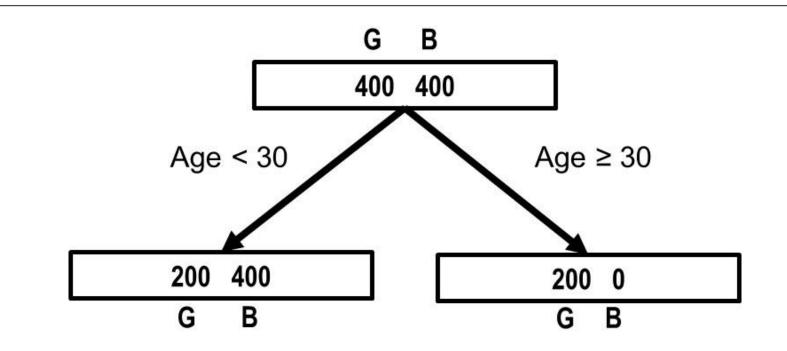


- Splitting decision
  - Which variable to split at what value
- Stopping decision
  - When to stop adding nodes to the tree?
- Assignment decision
  - What class to assign to a leaf node?

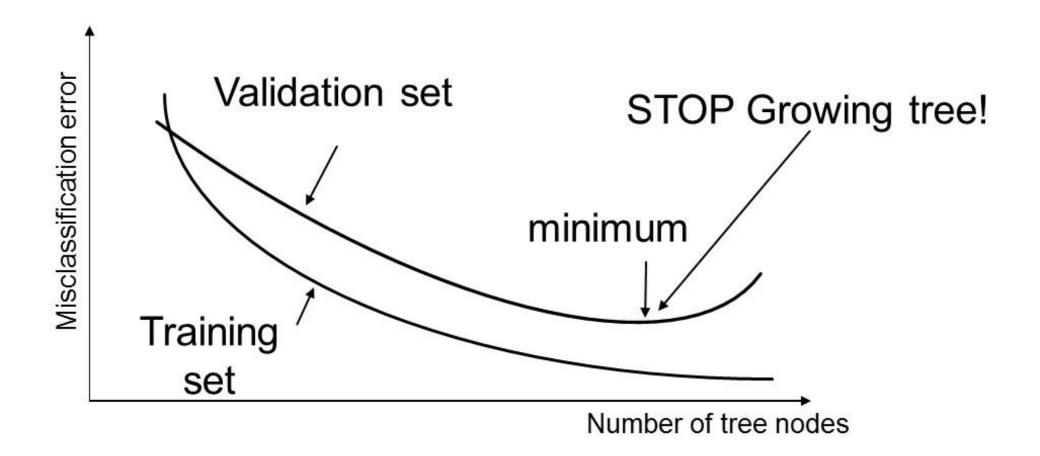


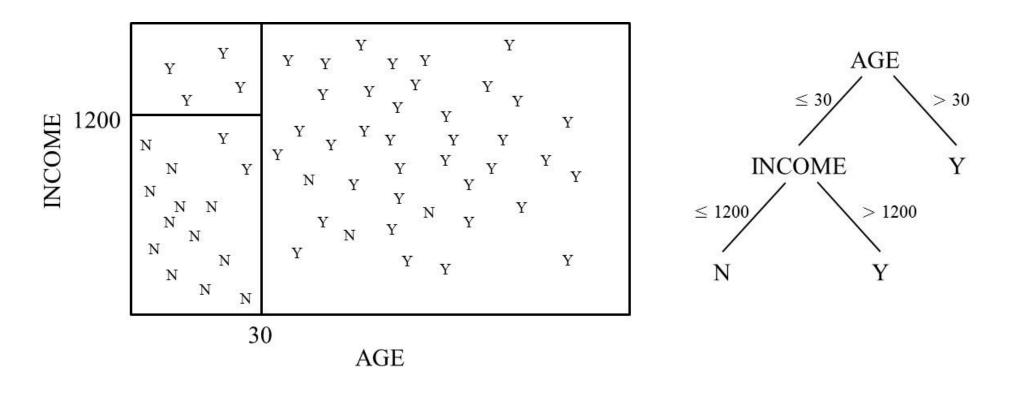
- Entropy:  $E(S) = -p_G \log_2(p_G) p_B \log_2(p_B)$  (C4.5/See5)
- Gini: Gini(S) =  $2p_G p_B$  (CART)



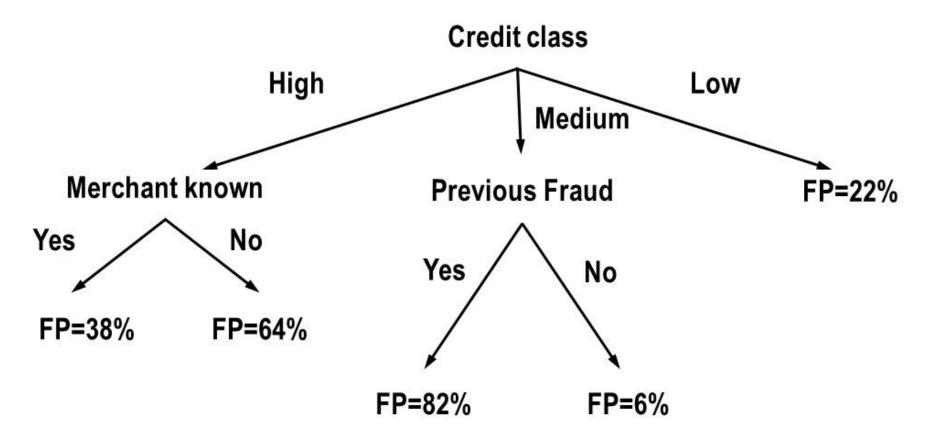


- Entropy top node =  $-1/2 \times \log_2(1/2) 1/2 \times \log_2(1/2) = 1$
- Entropy left node =  $-1/3 \times \log_2(1/3) 2/3 \times \log_2(2/3) = 0.91$
- Entropy right node =  $-1 \times \log_2(1) 0 \times \log_2(0) = 0$
- Gain =  $1 (600/800) \times 0.91 (200/800) \times 0 = 0.32$





• Regression trees



• Regression trees

$$-MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2,$$
  
$$-F = \frac{SS_{between}/(B-1)}{SS_{within}/(n-B)} \sim F_{n-B,B-1}$$
  
$$\cdot SS_{between} = \sum_{b=1}^{B} n_b (\bar{y}_b - \bar{y})^2$$

• 
$$SS_{within} = \sum_{b=1}^{B} \sum_{i=1}^{n_b} (y_{bi} - \bar{y}_b)^2$$

# Other predictive analytics techniques

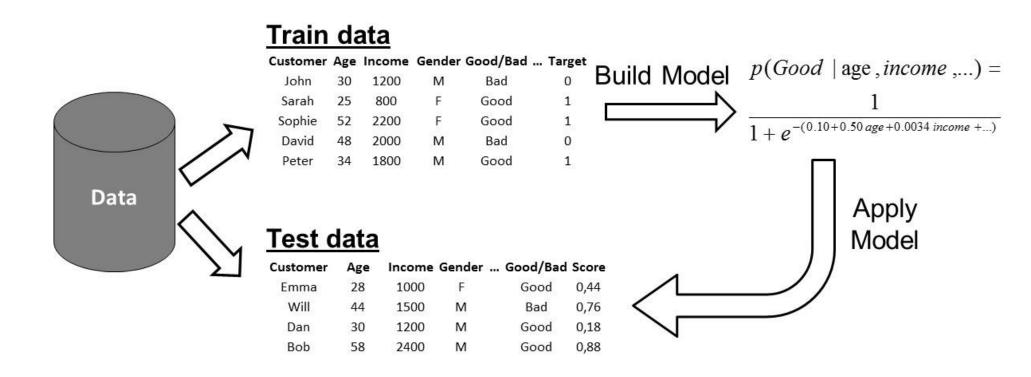
- Ensemble methods
  - Bagging, Boosting, Random Forests
- Neural Networks
- Support Vector Machines
- Deep Learning
- Trade-off between model performance and interpretability!

# **Evaluating Predictive Models**

- Splitting up the data set
- Performance Measures for Classification Models
- Performance Measures for Regression Models
- Other Performance Measures for Predictive Analytical Models

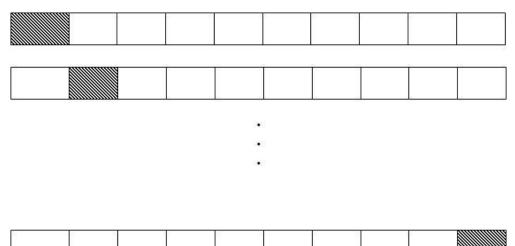
# Splitting up the data set

#### TRAIN/TEST DATA



# Splitting up the data set

#### **CROSS-VALIDATION**



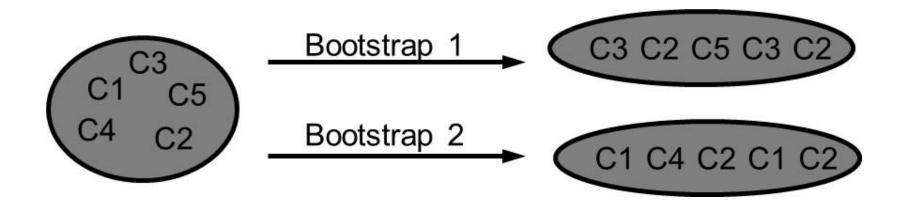




Training fold

# Splitting up the data set

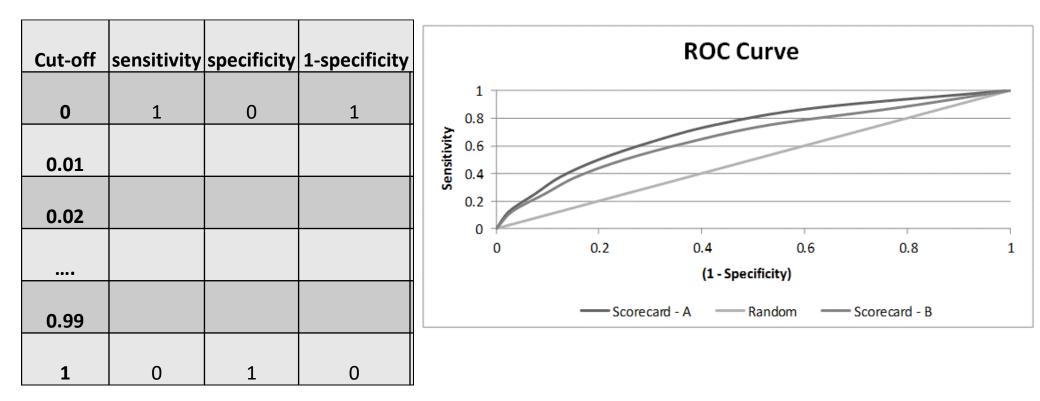
#### **BOOTSTRAPPING**



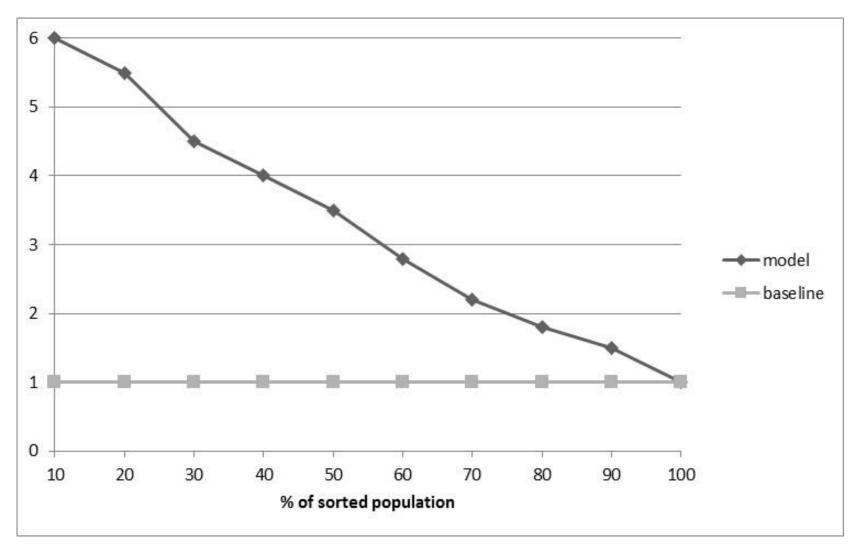
|        |       |             |             | Churn | Score |     |       |             |           |
|--------|-------|-------------|-------------|-------|-------|-----|-------|-------------|-----------|
|        |       |             | John        | Yes   | 0.72  |     |       |             |           |
|        |       |             | Sophie      | No    | 0.56  |     |       |             |           |
|        |       |             | David       | Yes   | 0.44  |     |       |             |           |
|        |       |             | Emma        | No    | 0.18  |     |       |             |           |
|        |       |             | Bob         | No    | 0.36  |     |       |             |           |
|        | Churn | Churn Score |             |       |       |     | Churn | Churn Score | Predicted |
| John   | Yes   | 0.72        |             |       | Joh   | n   | Yes   | 0.72        | Yes       |
| Sophie | No    | 0.56        | Cutoff=0.50 |       | Soph  | nie | No    | 0.56        | Yes       |
| David  | Yes   | 0.44        |             |       | Dav   | id  | Yes   | 0.44        | No        |
| Emma   | No    | 0.18        |             | P     | Emn   | na  | No    | 0.18        | No        |
| Bob    | No    | 0.36        |             |       | Bob   | 0   | No    | 0.36        | No        |

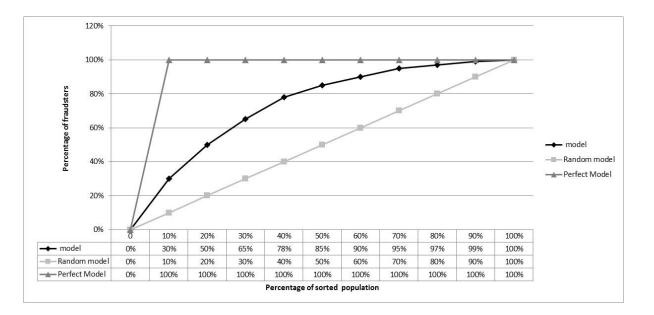
|                  |                     | Actual                 | status                    |
|------------------|---------------------|------------------------|---------------------------|
|                  |                     | Positive (churn)       | Negative (no churn)       |
|                  | Positive (churn)    | True Positive (John)   | False Positive (Sophie)   |
| Predicted status | Negative (no churn) | False Negative (David) | True Negative (Emma, Bob) |

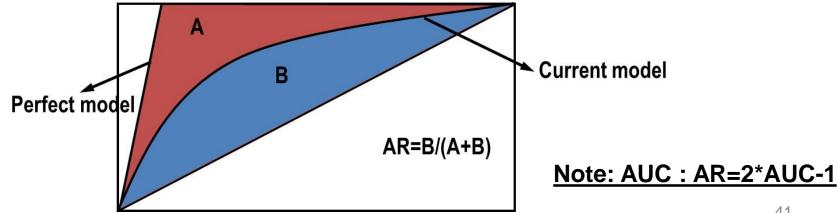
- Classification accuracy = (TP+TN)/(TP+FP+FN+TN) = 3/5
- Classification error = (FP +FN)/(TP+FP+FN+TN) = 2/5
- Sensitivity = Recall = Hit rate = TP/(TP+FN) = 1/2
- Specificity = TN/(FP+TN) = 2/3
- Precision = TP/(TP+FP) = 1/2
- F-measure = 2 \* (Precision \* Recall)/(Precision +Recall) = 1/2



AUC represents probability that randomly chosen churner gets higher score than randomly chosen non-churner!



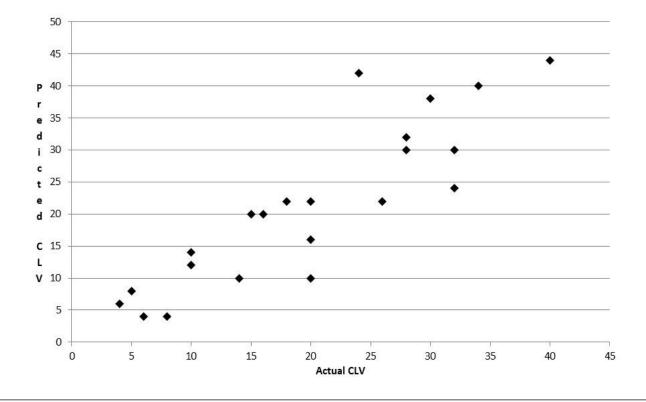




| Application              | Number of | AUC     |  |
|--------------------------|-----------|---------|--|
|                          | variables | Ranges  |  |
| Credit Scoring           | 10–15     | 70%–85% |  |
| Churn Prediction (Telco) | 6–10      | 70%–90% |  |
| Fraud Detection          | 10–15     | 70%–90% |  |
| (Insurance)              |           |         |  |

#### Performance Measures for Regression Models

• 
$$corr(\hat{y}, y) = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{\hat{y}})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (\hat{y}_i - \bar{\hat{y}})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}},$$



#### Performance Measures for Regression Models

• 
$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}},$$
  
•  $R^{2}_{adj} = 1 - \frac{n-1}{n-k-1} (1 - R^{2}) = 1 - \frac{n-1}{n-k-1} \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$   
•  $MSE = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n}$   
•  $MAD = \frac{\sum_{i=1}^{n} |y_{i} - \hat{y}_{i}|}{n}$ 

# Other Performance Measures for Predictive Analytical Models

- Comprehensibility
- Justifiability
- Operational efficiency

#### **Descriptive Analytics**

- Association rules
- Sequence rules
- Clustering

#### **Association Rules**

| Transaction identifier | Items                               |
|------------------------|-------------------------------------|
| 1                      | beer, milk, diapers, baby food      |
| 2                      | coke, beer, diapers                 |
| 3                      | cigarettes, diapers, baby food      |
| 4                      | chocolates, diapers, milk, apples   |
| 5                      | tomatoes, water, apples, beer       |
| 6                      | spaghetti, diapers, baby food, beer |
| 7                      | water, beer, baby food              |
| 8                      | diapers, baby food, spaghetti       |
| 9                      | baby food, beer, diapers, milk      |
| 10                     | apples, wine, baby food             |

Association rule is implication  $X \Rightarrow Y$ , whereby  $X \subset I$ ,  $Y \subset I$  and  $X \cap Y = \emptyset$ 

#### **Association Rules**

•  $support(X \cup Y) = \frac{number \ of \ transactions \ supporting \ (X \cup Y)}{total \ number \ of \ transactions}$ 

• confidence
$$(X \to Y) = p(Y|X) = \frac{support(X \cup Y)}{support(X)}$$

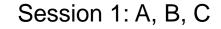
• 
$$lift(X \to Y) = \frac{support(X \cup Y)}{support(X).support(Y)}$$

#### **Association Rules**

- Post processing
  - Filter out trivial rules
  - Sensitivity analysis
  - Visualization
  - Measure economic impact

#### Sequence Rules

| Session ID | Page | Sequence |
|------------|------|----------|
| 1          | А    | 1        |
| 1          | В    | 2        |
| 1          | С    | 3        |
| 2          | В    | 1        |
| 2          | С    | 2        |
| 3          | А    | 1        |
| 3          | С    | 2        |
| 3          | D    | 3        |
| 4          | А    | 1        |
| 4          | В    | 2        |
| 4          | D    | 3        |
| 5          | D    | 1        |
| 5          | С    | 1        |
| 5          | A    | 1        |



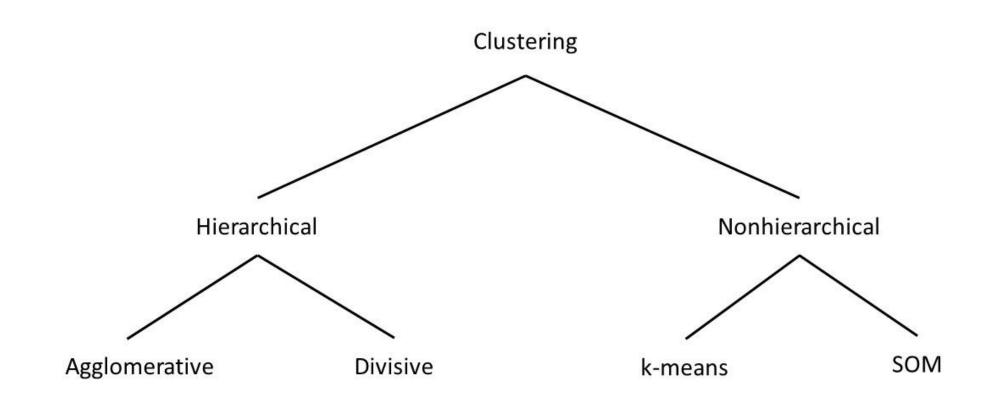
Session 2: B, C

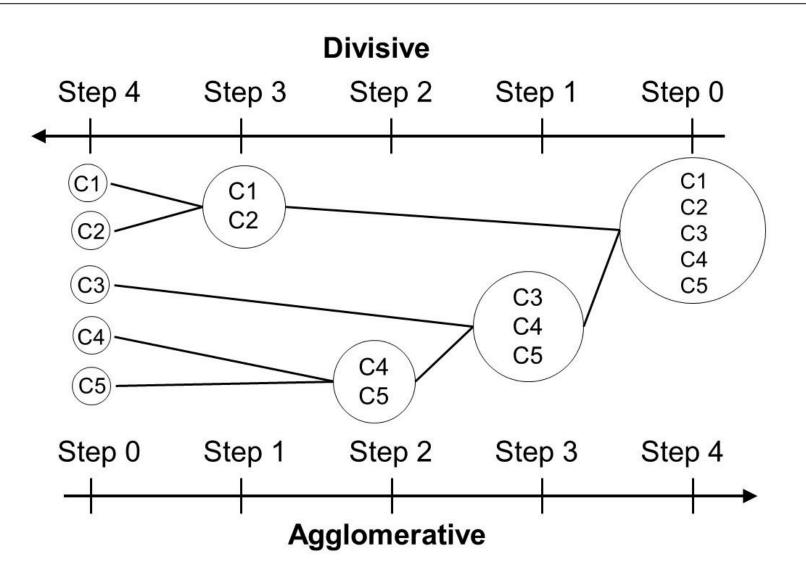
Session 3: A, C, D

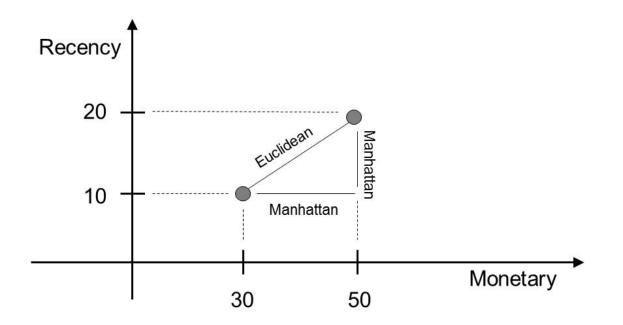
Session 4: A, B, D

Session 5: D, C, A

## Calculate confidence and support as with association rules!

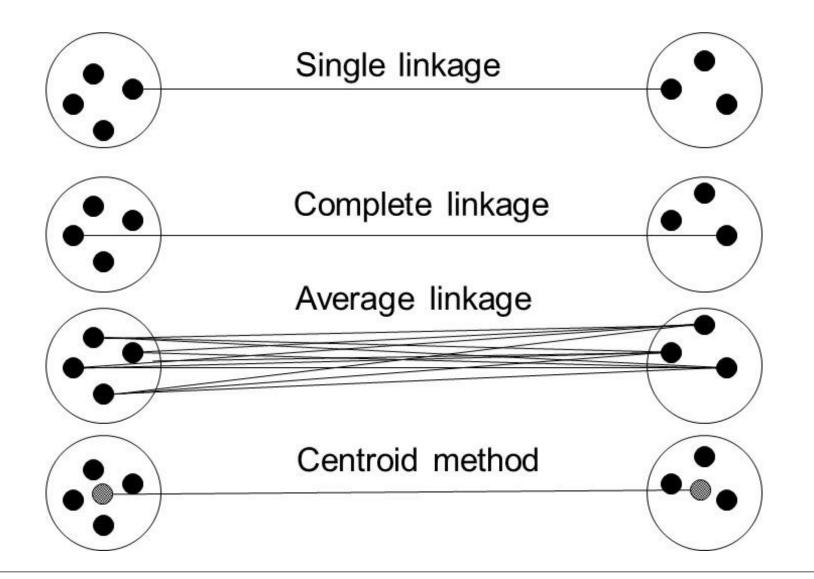


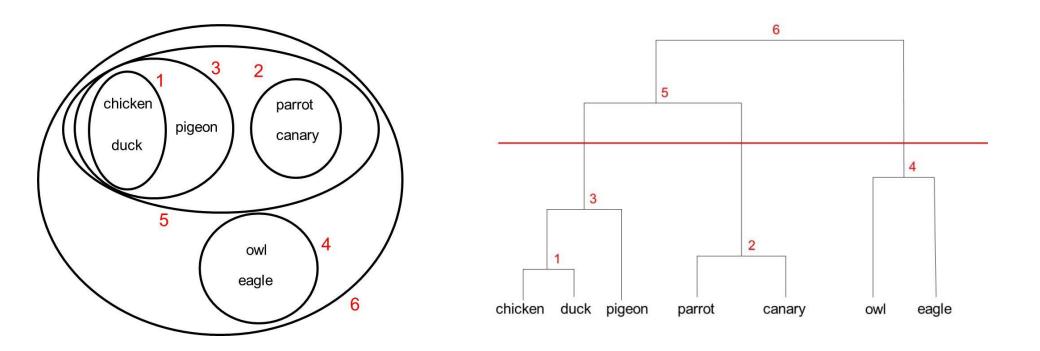




Euclidean:  $\sqrt{(50-30)^2+(20-10)^2}=22$ 

Manhattan: |50 - 30| + |20 - 10| = 30





- K-means clustering
  - Select K observations as initial cluster centroids (seeds)
  - Assign each observation to cluster that has closest centroid (for example, in Euclidean sense)
  - When all observations have been assigned, recalculate positions of K centroids
  - Repeat until cluster centroids no longer change

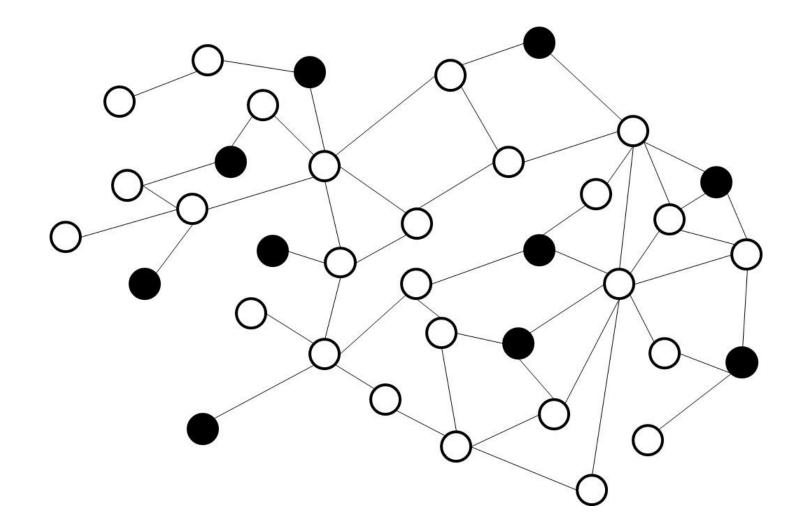
### **Social Network Analytics**

- Social Network Definitions
- Social Network Metrics
- Social Network Learning

### **Social Network Definitions**

- Social network consists of both nodes and edges
- Node could be defined as a customer (private/professional), household/family, patient, doctor, paper, author, terrorist, webpage, ...
- Edge can be defined as a 'friends' relationship, a call, transmission of a disease, a 'follows' relationship, a reference, etc.

#### **Social Network Definitions**



#### **Social Network Definitions**

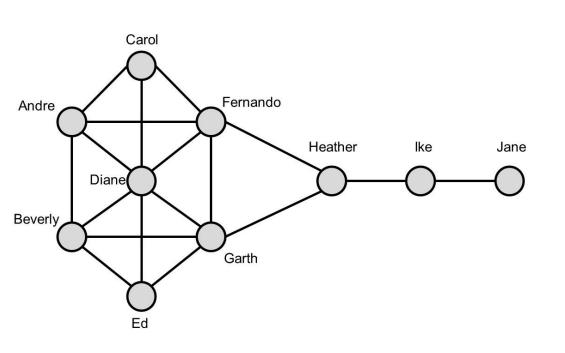
#### **Sociogram**

|    | C1 | C2 | С3 | C4 |
|----|----|----|----|----|
| C1 | -  | 1  | 1  | 0  |
| C2 | 1  | -  | 0  | 1  |
| C3 | 1  | 0  | _  | 0  |
| C4 | 0  | 1  | 0  | -  |

#### **Social Network Metrics**

| Geodesic                  | Shortest path between two nodes in the network.                                                           |                                                          |
|---------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Degree                    | Number of connections of a node (in- versus out-degree if the connections are directed).                  |                                                          |
| Closeness                 | The average distance of a node to all other nodes in the network (reciprocal of farness).                 | $\left[\frac{\sum_{j=1}^{g} d(N_i, N_j)}{g}\right]^{-1}$ |
| Betweenness               | Counts the number of times a node or edge lies on the shortest path between any two nodes in the network. | $\sum_{j < k} \frac{g_{jk}(N_i)}{g_{jk}}$                |
| Graph theoretic<br>center | The node with the smallest maximum distance to all other nodes in the network.                            |                                                          |

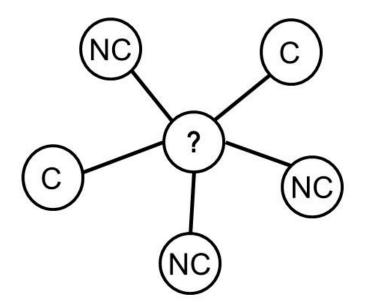
#### **Social Network Metrics**



| Degree |          | Cle  | oseness  | Betweenness |          |  |
|--------|----------|------|----------|-------------|----------|--|
| 6      | Diane    | 0.64 | Fernando | 14          | Heather  |  |
| 5      | Fernando | 0.64 | Garth    | 8.33        | Fernando |  |
| 5      | Garth    | 0.6  | Diane    | 8.33        | Garth    |  |
| 4      | Andre    | 0.6  | Heather  | 8           | lke      |  |
| 4      | Beverly  | 0.53 | Andre    | 3.67        | Diane    |  |
| 3      | Carol    | 0.53 | Beverly  | 0.83        | Andre    |  |
| 3      | Ed       | 0.5  | Carol    | 0.83        | Beverly  |  |
| 3      | Heather  | 0.5  | Ed       | 0           | Carol    |  |
| 2      | Ike      | 0.43 | Ike      | 0           | Ed       |  |
| 1      | Jane     | 0.31 | Jane     | 0           | Jane     |  |

#### **Social Network Learning**

#### **Featurization**



| Customer | Age | Income | <br>Mode link | Frequency<br>no churn | Frequency<br>churn | Binary<br>no churn | Binary<br>churn |
|----------|-----|--------|---------------|-----------------------|--------------------|--------------------|-----------------|
| Bart     | 38  | 2400   | <br>NC        | 3                     | 2                  | 1                  | 1               |

#### Social Network Learning

| Customer | Age | Recency | Number of contacts | Contacts with churners | Churn |
|----------|-----|---------|--------------------|------------------------|-------|
| John     | 35  | 5       | 18                 | 3                      | Yes   |
| Sophie   | 18  | 10      | 7                  | 1                      | No    |
| Victor   | 38  | 28      | 11                 | 1                      | No    |
| Laura    | 44  | 12      | 9                  | 0                      | Yes   |

| Customer | Age | Avg<br>duration | Avg<br>revenue | Promo-<br>tions | Avg age<br>friends | Avg<br>duration<br>friends | Avg<br>revenue<br>friends | Promo-<br>tions<br>friends | Churn |
|----------|-----|-----------------|----------------|-----------------|--------------------|----------------------------|---------------------------|----------------------------|-------|
| John     | 35  | 50              | 123            | х               | 20                 | 55                         | 250                       | Х                          | Yes   |
| Sophie   | 18  | 65              | 55             | Y               | 18                 | 44                         | 66                        | Y                          | No    |
| Victor   | 38  | 12              | 85             | None            | 50                 | 33                         | 50                        | Х, Ү                       | No    |
| Laura    | 44  | 66              | 230            | Х               | 65                 | 55                         | 189                       | х                          | No    |

### Post Processing of Analytical Models

- Interpretation and validation
- Sensitivity analysis
- Model deployment
- Backtesting

#### **Critical Success Factors for Analytical Models**

- Business relevance
- Statistical performance and validity
- Interpretability
- Justifiability
- Operational efficiency
- Economical cost
- Regulatory compliance

### **Economic Perspective on Analytics**

- Total Cost of Ownership (TCO)
- Return on Investment (ROI)
- In-versus Outsourcing
- On-Premise versus Cloud Solutions
- Open Source versus Commercial Software

### Total Cost of Ownership (TCO)

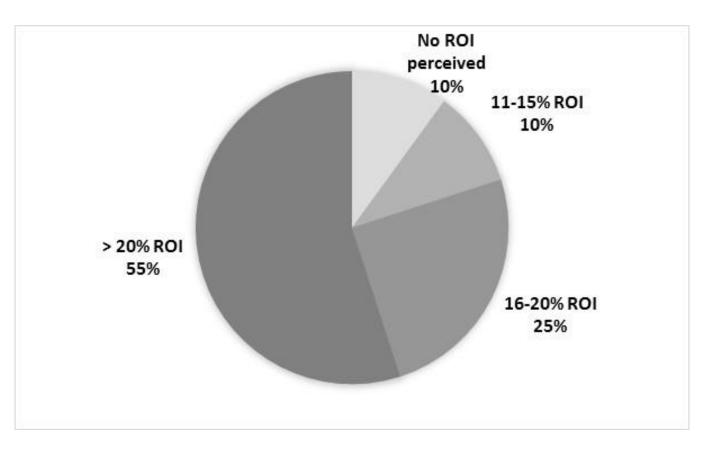
| Acquisition costs                                  | Ownership and operation costs                | Post ownership costs         |
|----------------------------------------------------|----------------------------------------------|------------------------------|
| • Software costs including initial purchase,       | Model migration and change management        | De-installation and disposal |
| upgrade, intellectual property and licensing fees  | costs                                        | costs                        |
| Hardware costs including initial purchase price    | Model setup costs                            | Replacement costs            |
| and maintenance                                    | Model execution costs                        | Archiving costs              |
| Network and security costs                         | Model monitoring costs                       |                              |
| Data costs including costs for purchasing external | • Support costs (troubleshooting, helpdesk,) |                              |
| data                                               | Insurance costs                              |                              |
| Model developer costs such as salaries and         | Model staffing costs such as salaries and    |                              |
| training                                           | training                                     |                              |
|                                                    | Model upgrade costs                          |                              |
|                                                    | Model downtime costs                         |                              |
|                                                    |                                              |                              |

### Return on Investment (ROI)

- Ratio of net benefits or net profits over investment of resources that generated this return
- Example benefits:
  - increase of sales
  - lower fraud losses
  - fewer credit defaults
  - identification of new customer needs/opportunities
  - automation of human decision making
  - development of new business models

### Return on Investment (ROI)

 Results from PredictiveanalyticsToday.com poll from February 2015 to March 2015



### In-versus Outsourcing

- Activities for outsourcing: data collection, cleaning and preprocessing, set up of platforms, training, model development, visualization, evaluation, monitoring and maintenance
- Risks
  - analytics concerns a company's frontend strategy
  - exchange of confidential information
  - continuity of the partnership
  - cultural mismatch
  - shortage of data scientists

### **On-Premise versus Cloud Solutions**

- On-Premise analytics
  - Keep data in-house (full control)
  - Security risk
  - Expensive up- or downsizing
- Cloud solutions
  - Better security management
  - Scalability and economies of scale
  - Easy maintenance/upgrades
  - Improved collaboration across business departments
  - Risk of vendor lock in

### **Open Source versus Commercial Software**

- Open source
  - Free
  - Less quality assurance
  - Full access to source code
- Commercial
  - Well-engineered business-focused solutions (end-toend)
  - Extensive help facilities
  - Business continuity
  - Pre-packaged, black box routines

## Improving the ROI of Analytics

- New sources of data
- Data quality
- Management support
- Organizational aspects
- Cross-Fertilization

### New sources of data

- Network data (explicit versus implicit)
- Publicly available data
- Macro-economic data
- Textual data
- Audio, images, videos, fingerprint, location (GPS), geospatial, RFID data, ...

### Data quality

- GIGO: Garbage In, Garbage Out
- Causes of data quality issues often deeply rooted within core organizational processes and culture
- Data preprocessing activities are corrective measures for dealing with data quality issues
- Transparent and well-defined collaboration between data stewards and data owners key to improve data quality in sustainable manner

- Either existing C-level executive takes responsibility or new CXO function is defined (e.g., Chief Analytics Officer or Chief Data Officer)
- Aim for top-down, data driven culture to catalyze trickledown effect
- Board of directors and senior management should be actively involved in analytical model building, implementation and monitoring processes

### **Organizational Aspects**

- Well-articulated data governance program is a good starting point
- Approaches:
  - Centralized: central department of data scientists handles all analytics requests
  - Decentralized: all data scientists directly assigned to business units
  - Mixed: centrally coordinated center of analytical excellence with analytics organized at business unit level

### **Cross-Fertilization**

- Most advanced analytical techniques in risk management
- Marketing analytics less mature
- HR analytics starting to kick-off
- Tremendous potential for cross-fertilization of model development and monitoring experiences across disciplines

### **Privacy and Security**

- Overall considerations
- RACI Matrix
- Accessing Internal Data
- Privacy Regulation

### **Overall considerations**

- Data security
  - set of policies and techniques to ensure confidentiality, availability and integrity of data
- Data privacy
  - parties accessing and using data can do so only in ways that comply with agreed upon purposes of data use in their role
- Security can be considered as necessary instruments to guarantee data privacy

### **Overall considerations**

- Data security pertains to following concerns
  - Guaranteeing data integrity
  - Guaranteeing data availability
  - Authentication and access control
  - Guaranteeing confidentiality
  - Auditing
  - Mitigating vulnerabilities

### **RACI** matrix



### Accessing Internal Data

- Anonymization
- SQL views
- Label Based Access Control (LBAC)

### Anonymization

- Techniques used:
  - Aggregation
  - Discretization
  - Value distortion
  - Generalization

### Anonymization

### Company's demographics

| VAT        | Name           | Address                    | Size | Creation date | Revenue     | Sector      |
|------------|----------------|----------------------------|------|---------------|-------------|-------------|
| 532.581.34 | Mony Bank      | Main Street 1943, Brussels | 592  | 09/05/1989    | € 9,900,000 | banking     |
| 532.582.26 | Villa Bella    | Av. Elisa 66, Liege        | 6    | 12/08/1990    | € 25,000    | cleaning    |
| 532.582.49 | The Green Lawn | Lawnstreet 1, Ghent        | 63   | 24/02/2004    | € 185,000   | agriculture |
| 532.585.71 | Salad Palace   | Main Street 1472, Brussels | 18   | 25/02/2007    | € 235,000   | catering    |
| 532.586.52 | Bart&Co.       | Main Street 239, Brussels  | 37   | 04/03/2009    | € 1,700,000 | transport   |
| 532.586.55 | Elisa's Bar    | Shortstreet 5, Antwerp     | 12   | 07/12/2011    | € 5,000     | catering    |
| 532.590.00 | Transport John | Av. Lovanias 31, Antwerp   | 104  | 18/12/2013    | € 34,000    | transport   |
|            |                |                            |      |               |             |             |

### Personnel records

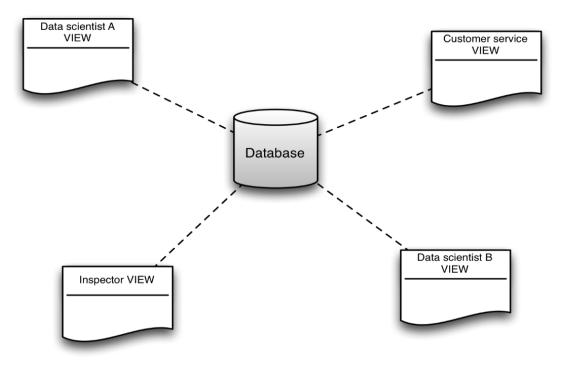
natural key

| - | VAT        | Name                                              | Income  | Recruitment                                               | Resignation |  |
|---|------------|---------------------------------------------------|---------|-----------------------------------------------------------|-------------|--|
|   | 532.586.52 | Gerry Hill                                        | € 1,500 | 14/09/2012                                                | -           |  |
|   | 532.586.52 | Niel Tenson                                       | € 1,500 | 07/12/2009                                                | -           |  |
|   | 532.586.52 | 532.586.52Daisy Astalos532.586.52William Wheately |         | € 1,800       26/03/2009         € 2,000       26/04/2014 |             |  |
|   | 532.586.52 |                                                   |         |                                                           |             |  |
|   | 532.586.52 | Tom Book                                          | € 1,600 | 03/05/2010                                                | 14/01/2011  |  |
|   | 532.586.52 | John Angeles                                      | € 1,750 | 17/05/2009                                                | 04/02/2015  |  |
|   |            |                                                   |         |                                                           |             |  |
|   |            |                                                   |         |                                                           |             |  |

### Anonymised view

| ID       | Province | Size | Maturity | Revenue      | Sector      | Empl. Q1 | Empl. Q2 | Empl. Q3 | Empl. Q4 | Avg. wage |
|----------|----------|------|----------|--------------|-------------|----------|----------|----------|----------|-----------|
| 19649524 | P7       | 3    | A        | € 200,000    | agriculture | 2        | 4        | 0        | 0        | € 1,550   |
| 27499423 | P2       | 4    | Y        | € 30,000     | transport   | -5       | -5       | -3       | -5       | € 1,650   |
| 31865139 | P1       | 2    | A        | € 2,000,000  | transport   | 5        | 5        | 5        | -5       | € 1,600   |
| 39174842 | P1       | 2    | A        | € 250,000    | catering    | -1       | 2        | 0        | 2        | € 1,500   |
| 59135796 | P5       | 1    | М        | € 30,000     | cleaning    | 0        | 0        | 0        | 0        | € 1,400   |
| 73591064 | P1       | 5    | М        | € 10,000,000 | banking     | 10       | 10       | 5        | 5        | € 1,800   |
| 91245975 | P2       | 2    | Y        | € 10,000     | catering    | 0        | -2       | 0        | 1        | € 1,350   |
|          |          |      |          |              |             |          |          |          |          |           |

### **SQL** Views



```
CREATE VIEW FRAUD_INPUT
AS SELECT C.ANON_VAT, C.PROVINCE, C.ANON_SIZE,
C.ANON_REVENUE, C.SECTOR, C.ANON_AGE, AVG(P.WAGE), COUNT(*)
FROM COMPANIES C, PERSONNEL P
WHERE C.ANON_VAT = P.ANON_VAT
GROUP BY C.ANON_VAT;
```

### Label-Based Access Control (LBAC)

 Control mechanism to protect data against unauthorized access

CREATE SECURITY LABEL COMPONENT my\_sec\_label\_comp
ARRAY [CONFIDENTIAL, UNCLASSIFIED]

CREATE SECURITY POLICY my\_sec\_policy
COMPONENTS my\_sec\_label\_comp
WITH DB2LBACRULES

### Label-Based Access Control (LBAC)

CREATE SECURITY LABEL my\_sec\_policy.confidential
COMPONENT my\_sec\_label\_comp CONFIDENTIAL

CREATE SECURITY LABEL my\_sec\_policy.unclassified
COMPONENT my\_sec\_label\_comp UNCLASSIFIED

GRANT SECURITY LABEL my\_sec\_policy.unclassified TO USER
BartBaesens FOR ALL ACCESS

### Label-Based Access Control (LBAC)

# GRANT SECURITY LABEL my\_sec\_policy.unclassified TO USER SeppevandenBroucke FOR READ ACCESS

GRANT SECURITY LABEL my\_sec\_policy.confidential TO USER
WilfriedLemahieu FOR ALL ACCESS

```
CREATE TABLE EMPLOYEE
  (SSN CHAR(6) NOT NULL PRIMARY KEY,
  NAME VARCHAR(40) NOT NULL,
  SALARY INT SECURED WITH confidential,
```

SECURITY POLICY my\_sec\_policy)

...

## **Privacy Regulation**

- EU: GDPR
  - right to be informed about how your personal data will be used, right to access and rectify your personal data, right to erase your personal data and right for human intervention in automated decision models, such as analytical prediction models
- US: not highly-regulated (yet)
  - Privacy Act of 1974, Health Insurance Portability and Accountability Act of 1996, Electronic Communications Privacy Act (ECPA) of 1986
- EU-US Privacy Shield

## Conclusions

- The Analytics Process Model
- Example Analytics Applications
- Data Scientist Job Profile
- Data Preprocessing
- Types of Analytics
- Post Processing of Analytical Models
- Critical Success Factors for Analytical Models
- Economic Perspective On Analytics
- Improving the ROI of Analytics
- Privacy and Security

### More information?

### JUMP INTO THE EVOLVING WORLD OF DATABASE MANAGEMENT

Principles of Database Management provides students with the comprehensive database management information to understand and apply the fundamental concepts of database design and modeling, database systems, data storage, and the evolving world of data warehousing, governance and more. Designed for those studying database management for information management or computer science, this illustrated textbook has a well-balanced theory-practice focus and covers the essential topics, from established database technologies up to recent trends like Big Data, NoSQL, and analytics. One-going case studies, drill down boxes that reveal deeper insights on key topics, retention questions at the end of every section of a chapter, and connections boxes that show the relationship between concepts throughout the text are included to provide the practical tools to get started in database

### **KEY FEATURES INCLUDE:**

- Full-color illustrations throughout the text.
- Extensive coverage of important trending topics, including data warehousing, business intelligence, data integration, data quality, data governance, Big Data and analytics.
- An online playground with diverse environments, including MySQL for querying; MongoDB; Neo4j Cypher; and a tree structure visualization environment.
- Hundreds of examples to illustrate and clarify the concepts discussed that can be reproduced on the book's companion online playground.
- · Case studies, review questions, problems and exercises in every chapter.
- · Additional cases, problems and exercises in the appendix.



Code and data for examples

Cover illustration: @Chen Hanquan / DigitalVision / Getty Images. Cover design: Andrew Ward.



WILFRIED LEMAHIEU Seppe vanden broucke Bart baesens

### DATABASE DATABASE MANAGEMENT THE PRACTICAL GUIDE TO STORING. MANAGING

THE PRACTICAL GUIDE TO STORING, MANAGING AND ANALYZING BIG AND SMALL DATA

### www.pdbmbook.com

CAMBRIDGE UNIVERSITY PRESS